The Effects of CO₂ on Phytoplankton Community Structure in the Amazon River Plume

Chen, Therese L.¹, Goes, Joaquim I.², Gomes, Helga², McKee, Kali T.²

¹Barnard College, Columbia University, New York, NY, ²Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY.

The Amazon River Plume, which results from an enormous discharge of freshwater and organic matter into the Atlantic Ocean, is a unique environment with a natural pCO_2 gradient in the surface waters of the plume that range from 130-950uatm. The response of coastal marine phytoplankton to increased anthropogenic CO₂ emission is still unknown, hence the Amazon River Plume gradient can serve as a natural laboratory to examine the potential influence of atmospheric CO₂ increases and ocean acidification on phytoplankton community composition. A two pronged study was undertaken: the first in which shipboard samples from a 2010 cruise to the Amazon River Plume were analyzed to examine the distribution of 3 major phytoplankton groups (diatoms, diatomdiazotroph associations [DDAs], and the diazotroph Trichodesmium spp.) with respect to the natural pCO_2 gradient; the second in which the growth responses of Thalassiosira weisflogii, a representative diatom species, were examined under experimentally manipulated CO₂ conditions. Differential growth was observed at 150, 400, and 800 ppm CO₂ treatments. Absorption spectra analysis of pigments and Fast Repetition Rate Fluorometer analysis indicate potential changes in photosynthetic machinery with different CO_2 treatments. Future CO_2 manipulation experiments on representative DDA and diazotroph species will be undertaken to compare the growth responses of these 3 major phytoplankton groups to changes in CO₂.